Copied to
clipboard

G = C42.59Q8order 128 = 27

19th non-split extension by C42 of Q8 acting via Q8/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.59Q8, C84(C4⋊C4), (C4×C8)⋊17C4, (C2×C4).74D8, C42(C2.D8), C4.2(C4⋊Q8), (C2×C8).42Q8, (C2×C8).243D4, (C2×C4).36Q16, C2.1(C84D4), C2.1(C82Q8), C22.35(C2×D8), C42.324(C2×C4), C429C4.7C2, C2.1(C4⋊Q16), C23.754(C2×D4), (C22×C4).578D4, C22.28(C4⋊Q8), C22.28(C2×Q16), C2.6(C429C4), C22.28(C41D4), (C22×C8).524C22, (C2×C42).1060C22, (C22×C4).1344C23, (C2×C4×C8).34C2, C4.34(C2×C4⋊C4), C2.8(C2×C2.D8), (C2×C2.D8).2C2, (C2×C8).221(C2×C4), (C2×C4).729(C2×D4), (C2×C4).194(C2×Q8), (C2×C4).132(C4⋊C4), (C2×C4⋊C4).48C22, C22.103(C2×C4⋊C4), (C2×C4).543(C22×C4), SmallGroup(128,577)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.59Q8
C1C2C22C23C22×C4C2×C42C2×C4×C8 — C42.59Q8
C1C2C2×C4 — C42.59Q8
C1C23C2×C42 — C42.59Q8
C1C2C2C22×C4 — C42.59Q8

Generators and relations for C42.59Q8
 G = < a,b,c,d | a4=b4=1, c4=b2, d2=bc2, ab=ba, ac=ca, dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=b2c3 >

Subgroups: 252 in 140 conjugacy classes, 92 normal (14 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C4⋊C4, C2×C8, C22×C4, C22×C4, C22×C4, C4×C8, C2.D8, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C429C4, C2×C4×C8, C2×C2.D8, C42.59Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, D8, Q16, C22×C4, C2×D4, C2×Q8, C2.D8, C2×C4⋊C4, C41D4, C4⋊Q8, C2×D8, C2×Q16, C429C4, C2×C2.D8, C84D4, C4⋊Q16, C82Q8, C42.59Q8

Smallest permutation representation of C42.59Q8
Regular action on 128 points
Generators in S128
(1 25 56 24)(2 26 49 17)(3 27 50 18)(4 28 51 19)(5 29 52 20)(6 30 53 21)(7 31 54 22)(8 32 55 23)(9 41 106 89)(10 42 107 90)(11 43 108 91)(12 44 109 92)(13 45 110 93)(14 46 111 94)(15 47 112 95)(16 48 105 96)(33 119 87 127)(34 120 88 128)(35 113 81 121)(36 114 82 122)(37 115 83 123)(38 116 84 124)(39 117 85 125)(40 118 86 126)(57 67 99 80)(58 68 100 73)(59 69 101 74)(60 70 102 75)(61 71 103 76)(62 72 104 77)(63 65 97 78)(64 66 98 79)
(1 63 5 59)(2 64 6 60)(3 57 7 61)(4 58 8 62)(9 128 13 124)(10 121 14 125)(11 122 15 126)(12 123 16 127)(17 79 21 75)(18 80 22 76)(19 73 23 77)(20 74 24 78)(25 65 29 69)(26 66 30 70)(27 67 31 71)(28 68 32 72)(33 44 37 48)(34 45 38 41)(35 46 39 42)(36 47 40 43)(49 98 53 102)(50 99 54 103)(51 100 55 104)(52 101 56 97)(81 94 85 90)(82 95 86 91)(83 96 87 92)(84 89 88 93)(105 119 109 115)(106 120 110 116)(107 113 111 117)(108 114 112 118)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 111 57 119)(2 110 58 118)(3 109 59 117)(4 108 60 116)(5 107 61 115)(6 106 62 114)(7 105 63 113)(8 112 64 120)(9 104 122 53)(10 103 123 52)(11 102 124 51)(12 101 125 50)(13 100 126 49)(14 99 127 56)(15 98 128 55)(16 97 121 54)(17 93 73 86)(18 92 74 85)(19 91 75 84)(20 90 76 83)(21 89 77 82)(22 96 78 81)(23 95 79 88)(24 94 80 87)(25 46 67 33)(26 45 68 40)(27 44 69 39)(28 43 70 38)(29 42 71 37)(30 41 72 36)(31 48 65 35)(32 47 66 34)

G:=sub<Sym(128)| (1,25,56,24)(2,26,49,17)(3,27,50,18)(4,28,51,19)(5,29,52,20)(6,30,53,21)(7,31,54,22)(8,32,55,23)(9,41,106,89)(10,42,107,90)(11,43,108,91)(12,44,109,92)(13,45,110,93)(14,46,111,94)(15,47,112,95)(16,48,105,96)(33,119,87,127)(34,120,88,128)(35,113,81,121)(36,114,82,122)(37,115,83,123)(38,116,84,124)(39,117,85,125)(40,118,86,126)(57,67,99,80)(58,68,100,73)(59,69,101,74)(60,70,102,75)(61,71,103,76)(62,72,104,77)(63,65,97,78)(64,66,98,79), (1,63,5,59)(2,64,6,60)(3,57,7,61)(4,58,8,62)(9,128,13,124)(10,121,14,125)(11,122,15,126)(12,123,16,127)(17,79,21,75)(18,80,22,76)(19,73,23,77)(20,74,24,78)(25,65,29,69)(26,66,30,70)(27,67,31,71)(28,68,32,72)(33,44,37,48)(34,45,38,41)(35,46,39,42)(36,47,40,43)(49,98,53,102)(50,99,54,103)(51,100,55,104)(52,101,56,97)(81,94,85,90)(82,95,86,91)(83,96,87,92)(84,89,88,93)(105,119,109,115)(106,120,110,116)(107,113,111,117)(108,114,112,118), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,111,57,119)(2,110,58,118)(3,109,59,117)(4,108,60,116)(5,107,61,115)(6,106,62,114)(7,105,63,113)(8,112,64,120)(9,104,122,53)(10,103,123,52)(11,102,124,51)(12,101,125,50)(13,100,126,49)(14,99,127,56)(15,98,128,55)(16,97,121,54)(17,93,73,86)(18,92,74,85)(19,91,75,84)(20,90,76,83)(21,89,77,82)(22,96,78,81)(23,95,79,88)(24,94,80,87)(25,46,67,33)(26,45,68,40)(27,44,69,39)(28,43,70,38)(29,42,71,37)(30,41,72,36)(31,48,65,35)(32,47,66,34)>;

G:=Group( (1,25,56,24)(2,26,49,17)(3,27,50,18)(4,28,51,19)(5,29,52,20)(6,30,53,21)(7,31,54,22)(8,32,55,23)(9,41,106,89)(10,42,107,90)(11,43,108,91)(12,44,109,92)(13,45,110,93)(14,46,111,94)(15,47,112,95)(16,48,105,96)(33,119,87,127)(34,120,88,128)(35,113,81,121)(36,114,82,122)(37,115,83,123)(38,116,84,124)(39,117,85,125)(40,118,86,126)(57,67,99,80)(58,68,100,73)(59,69,101,74)(60,70,102,75)(61,71,103,76)(62,72,104,77)(63,65,97,78)(64,66,98,79), (1,63,5,59)(2,64,6,60)(3,57,7,61)(4,58,8,62)(9,128,13,124)(10,121,14,125)(11,122,15,126)(12,123,16,127)(17,79,21,75)(18,80,22,76)(19,73,23,77)(20,74,24,78)(25,65,29,69)(26,66,30,70)(27,67,31,71)(28,68,32,72)(33,44,37,48)(34,45,38,41)(35,46,39,42)(36,47,40,43)(49,98,53,102)(50,99,54,103)(51,100,55,104)(52,101,56,97)(81,94,85,90)(82,95,86,91)(83,96,87,92)(84,89,88,93)(105,119,109,115)(106,120,110,116)(107,113,111,117)(108,114,112,118), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,111,57,119)(2,110,58,118)(3,109,59,117)(4,108,60,116)(5,107,61,115)(6,106,62,114)(7,105,63,113)(8,112,64,120)(9,104,122,53)(10,103,123,52)(11,102,124,51)(12,101,125,50)(13,100,126,49)(14,99,127,56)(15,98,128,55)(16,97,121,54)(17,93,73,86)(18,92,74,85)(19,91,75,84)(20,90,76,83)(21,89,77,82)(22,96,78,81)(23,95,79,88)(24,94,80,87)(25,46,67,33)(26,45,68,40)(27,44,69,39)(28,43,70,38)(29,42,71,37)(30,41,72,36)(31,48,65,35)(32,47,66,34) );

G=PermutationGroup([[(1,25,56,24),(2,26,49,17),(3,27,50,18),(4,28,51,19),(5,29,52,20),(6,30,53,21),(7,31,54,22),(8,32,55,23),(9,41,106,89),(10,42,107,90),(11,43,108,91),(12,44,109,92),(13,45,110,93),(14,46,111,94),(15,47,112,95),(16,48,105,96),(33,119,87,127),(34,120,88,128),(35,113,81,121),(36,114,82,122),(37,115,83,123),(38,116,84,124),(39,117,85,125),(40,118,86,126),(57,67,99,80),(58,68,100,73),(59,69,101,74),(60,70,102,75),(61,71,103,76),(62,72,104,77),(63,65,97,78),(64,66,98,79)], [(1,63,5,59),(2,64,6,60),(3,57,7,61),(4,58,8,62),(9,128,13,124),(10,121,14,125),(11,122,15,126),(12,123,16,127),(17,79,21,75),(18,80,22,76),(19,73,23,77),(20,74,24,78),(25,65,29,69),(26,66,30,70),(27,67,31,71),(28,68,32,72),(33,44,37,48),(34,45,38,41),(35,46,39,42),(36,47,40,43),(49,98,53,102),(50,99,54,103),(51,100,55,104),(52,101,56,97),(81,94,85,90),(82,95,86,91),(83,96,87,92),(84,89,88,93),(105,119,109,115),(106,120,110,116),(107,113,111,117),(108,114,112,118)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,111,57,119),(2,110,58,118),(3,109,59,117),(4,108,60,116),(5,107,61,115),(6,106,62,114),(7,105,63,113),(8,112,64,120),(9,104,122,53),(10,103,123,52),(11,102,124,51),(12,101,125,50),(13,100,126,49),(14,99,127,56),(15,98,128,55),(16,97,121,54),(17,93,73,86),(18,92,74,85),(19,91,75,84),(20,90,76,83),(21,89,77,82),(22,96,78,81),(23,95,79,88),(24,94,80,87),(25,46,67,33),(26,45,68,40),(27,44,69,39),(28,43,70,38),(29,42,71,37),(30,41,72,36),(31,48,65,35),(32,47,66,34)]])

44 conjugacy classes

class 1 2A···2G4A···4L4M···4T8A···8P
order12···24···44···48···8
size11···12···28···82···2

44 irreducible representations

dim11111222222
type++++-+-++-
imageC1C2C2C2C4Q8D4Q8D4D8Q16
kernelC42.59Q8C429C4C2×C4×C8C2×C2.D8C4×C8C42C2×C8C2×C8C22×C4C2×C4C2×C4
# reps12148244288

Matrix representation of C42.59Q8 in GL5(𝔽17)

160000
00100
016000
00010
00001
,
160000
016000
001600
00012
0001616
,
10000
001600
01000
00066
000140
,
130000
061300
0131100
0001010
000127

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1],[16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,1,16,0,0,0,2,16],[1,0,0,0,0,0,0,1,0,0,0,16,0,0,0,0,0,0,6,14,0,0,0,6,0],[13,0,0,0,0,0,6,13,0,0,0,13,11,0,0,0,0,0,10,12,0,0,0,10,7] >;

C42.59Q8 in GAP, Magma, Sage, TeX

C_4^2._{59}Q_8
% in TeX

G:=Group("C4^2.59Q8");
// GroupNames label

G:=SmallGroup(128,577);
// by ID

G=gap.SmallGroup(128,577);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,512,422,100,2019,248]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=b*c^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=b^2*c^3>;
// generators/relations

׿
×
𝔽